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ABSTRACT  

This study aims to construct digital fruit trees with high-precision geolocation and high-quality canopy 

phenotypic details, supporting the development of digital fruit tree technology and the establishment of smart 

orchards. The Neural Radiance Fields (NeRF) theory was integrated with georeferencing technology. Firstly, 

multiple ground control points were placed around the tree, and their WGS-84 coordinates were recorded 

using an RTK surveying instrument. Next, a drone captured multi-view images of the fruit tree, recording the 

camera poses during the image acquisition. The multi-view fruit tree images undergo ray casting, hierarchical 

sampling, and high-frequency position encoding before being input into a Multilayer Perceptron (MLP). The 

MLP was then supervised through volume rendering to obtain a convergent radiance field that reflects the true 

form of the fruit tree, resulting in the generation of a fruit tree point cloud. Finally, by establishing 

correspondences between the points in the fruit tree point cloud and the ground control points in the real world, 

a rigid transformation matrix was computed to convert the point cloud from a local coordinate system to WGS-

84 coordinates, yielding a geographically informed digital fruit tree. The experiments demonstrate that the 

constructed digital fruit tree exhibits excellent phenotypic details and accurately represents multi-scale 

characteristics. The accuracy of tree morphology indicators, such as tree height, crown length, and width, 

reached 99.12%, 99.34%, and 99.22%, respectively. Compared to point clouds generated by traditional 

Structure from Motion-Multi View Stereo (SFM-MVS) methods, the root mean square errors were reduced by 

61.24%, 73.48%, and 62.32%, respectively. Additionally, the georeferencing accuracy achieved millimeter-

level precision, with registration errors generally below 2 mm. The proposed method can construct digital fruit 

trees with high geolocation accuracy, detailed phenotypic information, and scale consistency, overcoming key 

barriers in the development of digital fruit tree technology. It can provide comprehensive data for various 

production operations in smart orchards. 

 

摘要 

本研究旨在构建具有高水平地理定位精度与高品质叶冠表型细节的数字果树，支持数字果树技术体系与智慧果园建设。将

神经辐射场（Neural Radiance Fields，NeRF）理论与地理坐标配准（Georeferencing）技术相结合，以初果期的桃树作

为研究对象。首先，在果树周围地面上布设多个地面控制点并通过RTK测量仪记录地面控制点中心位置的WGS-84坐标；

其次，使用无人机环绕拍摄果树多视角图像并记录拍摄时相机位姿；然后，将多视角果树图像进行光线投射法分层采样和

高频位置编码后输入多层感知机（Multilayer Perceptron，MLP），通过体积渲染（Volume Rendering）监督训练过程以

获取收敛且能反映果树真实形态的辐射场并导出果树点云；最后，通过果树点云中与现实世界中地面控制点的对应关系，

计算刚性变换矩阵，将果树点云从局部坐标系转换至 WGS-84 坐标系，得到具有地理信息的数字果树。试验表明，本研究

构建的数字果树具有良好的表型细节，可准确表征果树多尺度表型细节。该方法构建的果树点云在树高、冠层长度与宽度

等树形指标方面的精度分别达到 99.12%、99.34%、99.22%，相较于传统的运动恢复结构-多视图立体匹配（Structure 

from motion-Multi View Stereo，SFM-MVS）方法构建的果树点云，均方根误差分别减小 61.24%、73.48 %、62.32%。同

时，其地理坐标配准精度达到毫米级，配准误差普遍小于 2mm。该研究提出的方法能构建具有高地理坐标定位精度、高表

型细节与高尺度一致性的数字果树，突破了制约数字果树技术体系发展的关键瓶颈，能够为智慧果园的数字化果树表型组

学研究、数字化树形管理、数字化生长监测等领域提供关键技术支撑。 
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INTRODUCTION 

 In the intelligent orchard production model of all-weather, all-process, and all-space unmanned 

operations, the digital fruit tree technology system plays a crucial role (Wu et al., 2021). It provides 

comprehensive spatial perception capabilities for unmanned agricultural machinery, guiding autonomous tasks 

such as pruning (Yang et al., 2017), thinning (Zhang et al., 2020), and harvesting (Zhao, 2022). 

Simultaneously, in fields such as digital phenomics research (Hu et al., 2019), digital tree management 

(Jiménez-Brenes et al., 2017), and digital growth monitoring (Bdulridha et al., 2019), the digital fruit tree finds 

extensive application, holding significant importance for the construction and management of smart orchards 

(Zhou et al., 2019). 

 The acquisition of phenotypic information from fruit trees is a critical step in constructing digital fruit 

trees (Narvaez et al., 2019). The main approaches for obtaining three-dimensional phenotypes of fruit trees 

are laser scanning systems (Zhang et al., 2020; Colaço et al., 2017) and stereo vision systems. Laser scanning 

provides high accuracy but is costly and lacks color information. In contrast, stereo vision systems, represented 

by the Structure from Motion-Multi View Stereo (SfM-MVS) method, have lower costs and can simultaneously 

capture both the structure and color information of fruit trees.  

 Notably, Dongyu Ren et al. achieved the reconstruction of peach tree branches and crowns using the 

Kinect v2 camera (Ren et al., 2022),  

 Gatziolis et al. planned various aerial trajectories for SfM-MVS in tree 3D reconstruction (Gatziolis et 

al., 2015), and Miller et al. reconstructed potted trees using handheld cameras (Miller et al., 2015). However, 

for fruit tree canopies with complex topological structures and multi-scale high-frequency details, traditional 

stereo vision systems struggle to accurately capture their three-dimensional phenotypes, posing a critical 

scientific challenge to the development of digital fruit trees.  

 Mildenhall et al. introduced the theory of Neural Radiance Fields (NeRF) (Mildenhall et al., 2021), an 

implicit neural rendering (Tewari et al., 2022) for three-dimensional reconstruction. It achieves finer three-

dimensional representations of complex phenotypes through sparse input image sets and a Multilayer 

Perceptron (MLP). With research and improvements to the NeRF theory, there has been a significant leap in 

both speed and quality (Barron et al., 2021; Martin-Brualla et al., 2021; Tancik et al., 2023; Müller et al., 2022). 

 The foundation of digital fruit trees lies in obtaining phenotypic information from fruit trees, and further 

applications rely on accurate geographical information (Zhang et al., 2013). Geographical information supports 

automated agricultural practices in smart orchards and allows the integration of geographical, environmental, 

and meteorological data to build a comprehensive digital fruit tree management system. However, the fruit tree 

point clouds generated by stereo vision systems are limited to local coordinate systems, unable to provide 

global geographical information. Real-Time Kinematic (RTK) positioning systems, leveraging real-time 

differential GNSS technology, achieve centimeter-level high-precision geographical coordinate positioning. 

Therefore, combining the RTK positioning system with fruit tree point clouds allows for georeferencing, 

integrating digital fruit trees into a global geographical spatial framework. Extensive research has been 

conducted on the alignment and fusion of point clouds.  

 Nistér D., (2004), extracted feature points from point cloud data for feature point matching after 

acquiring the data using a stereo camera, thereby efficiently solving the traditional five-point relative pose 

problem.  

 Konolige et al., (2008) and Akbarzadeh et al., (2006), utilized the ICP (Iterative Closest Point) algorithm 

to align point cloud data from multiple scenes. The ICP algorithm has shown considerable promise in recent 

years. However, the alignment in this study requires the matching and fusion of two ground point clouds with 

significant overlap, using image control points. For aligning fruit tree point clouds and georeferenced ground 

point clouds, this study refers to the four-point fast matching algorithm proposed by Aiger D et al., (2008). 

 In addressing the challenges of stereo vision 3D reconstruction technology in accurately representing 

multi-scale complex phenotypic details of fruit trees and the lack of geographical location information in 

generated fruit tree point clouds, this study combined the Neural Radiance Fields theory with georeferencing 

technology. Focusing on peach trees, a method for constructing digital fruit trees based on the Neural 

Radiance Fields theory and georeferencing technology is proposed. The aim is to leverage the NeRF's 

excellent representation capabilities for high-frequency details and complex topological structures and the 

RTK's centimeter-level high-precision geographical coordinate positioning ability to build a digital fruit tree with 

high-level geospatial positioning accuracy and high-quality canopy phenotypic details. 
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MATERIALS AND METHODS 

 The experimental site for this study is the peach orchard at Shandong University of Technology, with 

the experimental subjects being individual peach trees in the early fruiting stage. Firstly, multiple ground control 

points were positioned around the fruit tree, and their WGS-84 coordinates were meticulously recorded using 

an RTK surveying instrument. Subsequently, a drone was employed to capture multi-perspective images of 

the fruit tree while simultaneously recording the camera poses during image acquisition. Following this, a 

Neural Radiance Field for the fruit tree was trained using image data augmented with additional pose 

information, and a point cloud was generated as an output. Lastly, through establishing correspondences 

between ground control points in the real world and points within the fruit tree point cloud, a rigid transformation 

matrix was computed. This facilitated the conversion of the fruit tree point cloud from local coordinate systems 

to the WGS-84 coordinate system, resulting in the generation of a geospatially informed digital fruit tree. 

 The equipment for fruit tree image acquisition and geographical coordinate measurement is illustrated 

in Figure 1. The image acquisition device utilized is the DJI "Mavic 2" unmanned aerial vehicle, while the 

geographical coordinate measurement device consists of the Qianxun SR2 high-precision Real-Time 

Kinematic (RTK) surveying instrument and ground control points. 

 
Fig. 1 - Experimental equipment 

1. Ground control point; 2. UAV; 3 RTK receiver 4. RTK display terminal; 5. RTK positioning rod 

 

 The individual peach tree selected for the experiment measured 2.18 m in height with a crown width 

of 2.17 m. The data collection was conducted between 4:30 and 4:45 p.m. under cloudy weather conditions, 

with a light breeze and no direct sunlight. The drone used for image acquisition operated with a focal length of 

26 mm and a resolution of 1920 × 1080 pixels. The setup for fruit tree image acquisition and geographical 

coordinate measurement is shown in Figure 2. Four ground control points (GCPs) were placed around the 

tree, clearly marked at the base of the trunk, the top of the canopy, and along its edges. Using an RTK 

surveying instrument, the WGS-84 coordinates of these GCPs were recorded. Following the calibration of the 

intrinsic parameters of the UAV-mounted camera, the drone captured multi-view images by circling the tree 

along a spiral trajectory, also illustrated in Figure 2. The flight trajectory was designed based on the 

experimental protocol outlined by Tewari et al. (2022), featuring a circumferential radius of approximately 3 m, 

a pitch of 0.5 m, and a rotation speed of around 2 RPM. This process resulted in the collection of 284 images 

with roughly 50% overlap. Finally, a 3D reconstruction dataset consisting of the fruit tree images and their 

corresponding camera pose data was compiled, serving as input for the subsequent neural radiance field-

based 3D reconstruction of the fruit tree. 

 

 
Fig. 2 - UAV aerial photography path 
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 The Neural Radiance Fields (NeRF) were trained using two-dimensional fruit tree images and 

corresponding pose data to transform the two-dimensional images into a three-dimensional spatial structure 

of the fruit tree. The NeRF utilized an implicit function to record color and volume density information of 

sampled points in the scene. This function is approximated by a Multilayer Perceptron (MLP) and converges 

during the training iterations. The experimental hardware configuration for training included: CPU: i9-10850K; 

GPU: NVIDIA GeForce RTX3090; RAM: 64GB. The software programs used in the point cloud measurement 

and visualization process were Cloud compare and Metashape. 

 Initially, camera rays were projected from the camera origin toward specific pixel directions on the 

image plane using the ray casting method (Kajyia J et al., 1984). Each ray traverses the fruit tree scene to 

capture visual information along its path. The camera ray D, originating from the camera center and passing 

through a given pixel, can be mathematically expressed as: 
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 The variable (m,n) represents the pixel coordinates through which the camera ray passes, with the 

pixel plane dimensions denoted as W for width and H for height. The camera intrinsic matrix is denoted as K. 

 Subsequently, sampling along the camera ray was conducted, where each sampled point was 

represented by a vector comprising five parameters: the coordinates of the points sampled along the ray (x,y,z) 

and the direction of the camera ray (θ,φ). After encoding the sampled points, the vector was input into the 

Multilayer Perceptron (MLP). The MLP, a fully connected deep neural network, consisted of two parts, as 

illustrated in Figure 3. The first part of the MLP comprises eight fully connected layers with 256 dimensions 

each, taking the sampled point coordinates (x,y,z) as input. To address potential issues such as gradient 

explosion and vanishing gradients in deep neural networks, a residual connection structure (Rahaman N et 

al., 2019) is introduced in the fourth layer of the network. This involves concatenating the output of the fourth 

layer with the input signal (x,y,z) before inputting it into the fifth layer, thereby breaking network symmetry and 

enhancing the representational capacity of the MLP. The MLP outputs the volume density w and a 256-

dimensional feature vector. 

 The second part, denoted as cMLP, takes the feature vector outputted by the wMLP and a 24-

dimensional high-frequency signal representing the direction of the camera ray f(θ,φ) as input. After 

concatenation, this combined input is passed through a 256-dimensional fully connected layer, and the output 

from the cMLP layer produces the color C=(R,G,B). 

 
Fig. 3 - Neural radiance field MLP illustration 

 
 The fruit tree scene was approximated as a neural radiance field describing the volume density and 

color of all sampled points in the scene through the two components of the Multilayer Perceptron (MLP). The 

initial neural radiance field generated exhibits a discrete, cloud-like form, lacking accurate representation of 

the tree's morphology. Therefore, it is necessary to perform volume rendering on the volume density and color 

of the sampled points outputted by the MLP. Subsequently, the MLP's weights were updated in reverse to 

facilitate training. 
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 Integral to this process is the direction along the camera ray, where each sampled point is integrated, 

and the volume density w serves as the weighting factor. Based on the volume density w, a weighted sum of 

colors C at each sampled point along the ray is computed. This calculation determines the color of the pixel 

point traversed by the camera ray. Higher volume density w corresponds to lower transparency, thus greater 

influence of the color C of the sampled point on the pixel color. This computation process is known as volume 

rendering, and the formula for the calculation is as follows: 
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 The variable Cc(r) represents the pixel color, T(t)denotes the cumulative transmittance coefficient, 

w(r(r(t)) is the volume density of the sampled point at position r(t), w(r(r(s))is the volume density of the 

sampled point at position r(s), C(r(t)) represents the color of the sampled point at position r(t), tn is the near 

point of the view frustum, and tf  is the far point of the view frustum. 

 Subsequently, to achieve high-quality rendering results with a reduced number of sampled points and 

simultaneously decrease computational complexity, coarse-fine two-level granularity stratified sampling and 

rendering were performed along the rays. This involves using the volume density distribution of coarse-grained 

sampled points as a reference to sample more fine-grained points in regions with higher volume density along 

the rays. 

 In the coarse-grained rendering phase, Nc points were uniformly sampled along the camera ray, input 

into the MLP, and subjected to coarse-grained volume rendering. The resulting coarse-grained rendering pixel 

color Ĉc(r) was obtained. Following this, Nf fine-grained sampled points, based on the volume density 

distribution of coarse-grained sampled points, are input again into the MLP for fine-grained volume rendering, 

yielding the fine-grained rendering pixel color Ĉf(r). 
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 The variables wg and wl represent the cumulative volume density of coarse-grained and fine-grained 

sampled points, respectively, while Cg and Cl denote the colors of coarse-grained and fine-grained sampled 

points. Nc and Nf are the respective quantities of coarse-grained and fine-grained sampled points. 

 After computing the coarse-grained rendering pixel color Ĉc(r) and the fine-grained rendering pixel 

color Ĉc(r), a comparison was made between each of them and the pixel color C(r) at the pixel (m,n) 

traversed by the camera ray. This process results in the derivation of the training loss, followed by the 

computation of the squared sum of the L norm of the loss. Iterating over all pixels for a given viewpoint V, the 

loss function L for that viewpoint is obtained. 
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 The variables Ĉc(r) and Ĉf(r) represent the pixel colors computed through coarse-grained and fine-

grained rendering, respectively, while C(r) is the color of the pixel along the ray direction. O encompasses all 

pixels in a given view. Subsequently, the network weights of the MLP are updated in reverse based on the 

loss function, iteratively adjusting the scene to gradually approximate the real morphology of the tree. This 

process continues until convergence conditions are met, completing the training of the neural radiance field 

for the tree. The final outcome is the NeRF scene of the tree, which characterized the three-dimensional spatial 

structure and realistic color information. By mapping the coordinates and color information of each sampled 

point in the scene to the local coordinate system and recording it, the three-dimensional real-world point cloud 

of the tree is obtained, thus achieving the three-dimensional reconstruction of the tree. 
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 The fruit tree point cloud obtained from the three-dimensional reconstruction exists in a local 

coordinate system. To establish a geospatially informed digital representation of the fruit tree, it is imperative 

to perform georeferencing on the fruit tree point cloud, thereby transforming it from the local coordinate system 

to the WGS-84 geographic coordinate system. In this study, ground control points (GCP) serve as registration 

benchmarks. Four ground control points were positioned around the fruit tree. Subsequently, using an RTK, 

the WGS-84 coordinates at the center of each ground control point were recorded. The simultaneous 

reconstruction of both the fruit tree and ground control points is illustrated in Figure 4, where the identification 

numbers of the ground control points are distinctly discernible in the point cloud. 

   
Fig. 4 - Comparison of ground control point cloud and photo 

 
 Consider the point cloud representing the fruit tree as Point Cloud A. Select the coordinates of four 

ground control points' centers as matching points, and designate them as the Point Cloud B, with the WGS-84 

geographic coordinates recorded by the RTK surveying instrument for these four ground control points as the 

corresponding matched points. For each matching point and its corresponding matched point, perform 

centering, and calculate the covariance matrix H using the decentered coordinates of the matching points. 
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 Where ϕA represents the average coordinates of matching points in Point Cloud A, and ϕB represents 

the average coordinates of matching points in Point Cloud B. Ai and Bi denote the i-th matching points in Point 

Cloud A and B, respectively.  △Ai and △Bi represent the decentered coordinates of the matching points. H 

stands for the covariance matrix. Subsequently, perform singular value decomposition on H and calculate the 

scaling factors. The calculation formula is as follows. 
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 Where U and V are the left and right singular vector matrices, respectively. Σ represents the singular 

value matrix, and ui (i=1,2,3) denotes the column vectors of matrix U. Similarly, vi (i=1,2,3) represents the 

row vectors of matrix V, and σi (i=1,2,3) denotes the singular values, indicating the scaling factors in different 

directions for the matching points. Through the left and right singular vector matrices and the scaling factor, 

calculate the rotation matrix R and translation vector t to transform Point Cloud A from the local coordinate 

system to the WGS-84 coordinate system. These components constitute the rigid transformation matrix that 

aligns Point Cloud A with Point Cloud B. 
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 Where ϕA and ϕB represent the average coordinates of matching points in Point Cloud A and B, 

respectively. U and V are the left and right singular vector matrices, R is the rotation matrix, t is the translation 

vector, s is the scaling factor, and T is the rigid transformation matrix. Applying the rigid transformation matrix 

T to all points in Point Cloud A aligns Point Cloud A with the coordinate system of Point Cloud B. As a result, 

each point in the tree point cloud obtains its coordinates in the WGS-84 geographical coordinate system, 

establishing a digital tree with geographical coordinate information. 

 

RESULTS AND ANALYSIS 

 The dataset for the three-dimensional reconstruction of the tree consists of a total of 284 images, with 

21 images in the training dataset and 263 in the testing dataset. The training process of the tree NeRF scene 

spans 30,000 steps, taking 17 minutes and 16 seconds, with a generation rate of 1.14×105 training rays per 

second. As illustrated in Figure 5, after reaching 15,000 steps, the scene representation stabilizes, and 

parameters such as learning rate, training loss, distortion loss, RGB loss, among others, gradually converge. 
The learning rate is a critical component in the optimization of machine learning models. It is employed to 

regulate the step size of the update process, which is progressively reduced through the implementation of an 

exponential decay strategy. The training loss functions as the overarching objective function for model 

optimization, thereby guiding the direction of parameter updates. RGB loss serves as the primary supervisory 

signal of NeRF, reflecting the model's performance in color reconstruction and geometric rationality. Aberration 

loss, on the other hand, leads to a more rational volume density distribution, thereby enhancing geometric 

coherence and rendering quality. 

0 10000 20000 30000
-0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

L
ea

rn
in

g
 r

at
e

Steps   
0 10000 20000 30000

0.005

0.010

0.015

0.020

0.025

T
ra

in
in

g
 l

o
ss

Steps
  

0 10000 20000 300000.004

0.006

0.008

0.010

0.012

0.014

R
G

B
 l

o
ss

Steps   
0 10000 20000 300000.0000

0.0002

0.0004

0.0006

D
is

to
rt

io
n

 l
o

ss

Steps
 

Fig. 5 - Neural radiance field training parameters 

 
 The reconstructed three-dimensional NeRF scene of the fruit tree is depicted in Figure 6, juxtaposed 

with corresponding depth maps and photographs of the fruit tree. The fidelity of the reconstructed fruit tree in 

terms of color and texture is exceptional, closely resembling the photograph of the fruit tree taken at the same 

pose, thereby achieving a representation effect at the level of real scenes. The contours of the canopy in the 

NeRF scene depth map are sharp and well-defined, with clear delineation of branches and leaf layers, 

providing distinct hierarchical depth information. This underscores the commendable three-dimensional 

representation efficacy of the NeRF scene. 

 
Fig. 6 - Comparison between fruit tree photo and fruit tree NeRF scene and depth map 

 
 In order to assess the three-dimensional scene representation efficacy of the NeRF method, fruit tree 

images from the test dataset were compared with corresponding NeRF scene images captured at identical 

poses. Structural Similarity Index (SSIM) (Rahaman N et al., 2019) and Learned Perceptual Image Patch 

Similarity (LPIPS) (Zhang R et al., 2018) were introduced as two image quality assessment metrics to gauge 

the scene reconstruction capability of the NeRF method. Figure 7 illustrates the evolution of these evaluation 

metrics during the training process. The LPIPS metric stabilizes within the range of 0.2 to 0.3 after 25,000 
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steps, with a minimum value of 0.2050. The SSIM metric stabilizes within the range of 0.6 to 0.7 after 25,000 

steps, reaching a maximum value of 0.7215.  

 Both evaluation metrics consistently reside within the high-quality range (Wang Z et al., 2004), 

indicating the NeRF method's proficient recovery capability for high-frequency detailed scenes. 
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Fig. 7 - Neural radiance field quality assessment metrics 

 
 Due to the inherent nature of the NeRF scene for fruit trees, which is essentially a representation by 

an implicit function approximated using Multilayer Perceptrons (MLP), direct editing of the scene is not feasible. 

Consequently, it becomes imperative to convert the NeRF scene into a three-dimensional point cloud model 

for subsequent research and applications. The fruit tree point cloud model, derived from the NeRF scene, is 

depicted in Figure 8, where features such as the fruit tree, ground control points, and yellow markers at the 

base of the trunk are distinctly reconstructed within the point cloud model. 

 
Fig. 8 - Comparison between NeRF scene of fruit tree and Point cloud model of fruit tree 

 
 The ground control points play a pivotal role as essential links establishing the connection between 

the local coordinate system and the WGS-84 coordinate system for the fruit tree point cloud. Four ground 

control points were deployed for this experiment, denoted as points 2, 13, 20, and 28. The centroids of these 

four points were utilized as matching points to compute the rigid transformation matrix. Consequently, the 

ground control points in the fruit tree point cloud model were aligned with their corresponding positions in the 

WGS-84 coordinate system. In the geospatial coordinate registration process of this experiment, the scaling 

factor s was determined to be 1.00809. The rigid transformation matrix T applied is expressed as follows: 
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0 0 0 1
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− −
 =
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 To validate the accuracy of geospatial coordinate registration, the right upper corner points of each 

ground control point and the vertices of the triangular yellow markers at the base of the trunk were selected as 

test points. An RTK surveying instrument was employed to measure the WGS-84 coordinates of these test 

points as actual values. Subsequently, the WGS-84 geographical coordinates at the corresponding positions 

in the fruit tree point cloud after registration were measured as experimental values. A comparison was then 

conducted between the measured and actual values. The geospatial coordinate registration accuracy, as 

depicted in Table 1, indicates registration errors within a 2 mm range, attaining accuracy at the millimeter level. 

 
Table 1  

Georeferencing accuracy evaluation metrics 

GCPs parameter X-coordinate Y-coordinate Z-coordinate 
Registration errors 

/mm 

The measured value 
for GCP 2 

588758.186722 4074069.579384 27.214424 —— 
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GCPs parameter X-coordinate Y-coordinate Z-coordinate 
Registration errors 

/mm 

The measured value 
for GCP 13 

588760.144802 4074068.612587 27.178391 —— 

The measured value 
for GCP 20 

588759.746929 4074066.781326 27.258263 —— 

The measured value 
for GCP 38 

588757.133163 4074067.676079 27.354832 —— 

Measured value  for 
trunk marker points 

588758.619942 4074068.453690 27.209908 —— 

The tested value for 
GCP 2 

588758.171104 4074069.567116 27.273319 1.2001 

The tested value for 
GCP 13 

588760.156357 4074068.628487 27.251610 1.9655 

The tested value for 
GCP 20 

588759.755337 4074066.795830 27.353138 1.6764 

The tested value for 
GCP 38 

588757.148190 4074067.669708 27.358818 1.8644 

The tested value for 
trunk marker points 

588758.608894 4074068.453888 27.345152 1.1049 

 
 To assess the quality of the NeRF fruit tree point cloud, a set of fruit tree point clouds was reconstructed 
using the classical stereo vision algorithm SFM-MVS as a control, based on the same dataset. A detailed 
analysis was conducted to compare the reconstruction effects and reconstruction scale consistency between 
the two types of fruit tree point clouds. 
 Regarding the reconstruction effects, as illustrated in Figure 9, a thorough comparison was made at the 

scales of tree, canopy, and organ for the phenotypic reconstruction of fruit trees using the two methods. At the 

tree scale, the NeRF method produced a fruit tree point cloud with sharp contours, clear crown textures, and 

well-defined branch hierarchy. In contrast, the SFM-MVS fruit tree point cloud exhibited blurred contours, 

abundant noise in the crown, and difficulties in texture recognition. At the canopy scale, the NeRF fruit tree 

point cloud accurately restored the morphology of branches and leaves. Details such as internal branches, 

clustered peach tree fruits, and diseased and withered leaves were clearly visible in Figure 9g, highlighting the 

NeRF method's outstanding recovery capability for high-frequency canopy details. In contrast, the SFM-MVS 

method at the canopy scale could hardly identify any fruit tree organs. At the organ scale, despite the clustering 

of immature peach fruits due to non-thinning, the NeRF method could still distinctly reconstruct each fruit, 

providing a clear, well-organized, and highly recognizable structure. This level of detail is sufficient to guide 

unmanned agricultural machinery in thinning and harvesting operations. Conversely, the SFM-MVS fruit point 

cloud at the organ scale exhibited a mosaic-like pattern, rendering it incapable of identifying any details. 

 
a. tree-scale point cloud                b. tree-scale point cloud              c. tree-scale point cloud            d. tree-scale point cloud 

（NeRF）                                （SFM-MVS）                                 （NeRF）                                （SFM-MVS） 

 

    
e. canopy -scale point cloud       f. canopy -scale point cloud        g. canopy -scale point cloud        h. canopy -scale point cloud 

（NeRF）                                （SFM-MVS）                                 （NeRF）                                （SFM-MVS） 
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i. organ -scale point cloud         j. organ -scale point cloud            k. organ -scale point cloud             l. organ -scale point cloud 

（NeRF）                                （SFM-MVS）                                  （NeRF）                                   （SFM-MVS） 

 
Fig. 9 - Comparison of NeRF fruit tree point cloud and MVS fruit tree point cloud 

 
 In terms of scale consistency, prior to the experiment, marker points were placed throughout the canopy 

of the fruit tree, as depicted in Figure 10. Tree height, crown length, and width were measured at these marker 

points and served as actual values. Additionally, the trunk diameter at 1.3 meters above the ground level was 

measured as an actual value for breast height.  

 Within the fruit tree point cloud, the distances were calculated for the corresponding measurement 

parameters by selecting marker points. Both actual and experimental values were measured 10 times, and the 

averages were taken as the true values. 

   
Fig. 10 - Comparison between photo of tagged point and point cloud of tagged point 

 
 As indicated in Table 2, both methods exhibit comparable accuracy levels, with a root mean square error 

of 0.0047 m, when reconstructing the morphology of objects characterized by regular shape and simplicity, 

such as breast diameter. They both demonstrate a high-level reconstruction accuracy at the millimeter scale. 

However, in the reconstruction of the fruit tree canopy, which involves intricate details and complex phenotypic 

information, the reconstruction accuracy of the NeRF method significantly surpasses that of the SFM-MVS 

method. The scale consistency accuracy for tree height, crown major axis, and crown minor axis achieved by 

the NeRF method are 99.12%, 99.34%, and 99.22%, respectively. In comparison to the SFM-MVS method, 

the root mean square errors are reduced by approximately 61.24%, 73.48%, and 62.32%, respectively. 

Table 2  

3D Reconstruction scale consistency Evaluation Indexes 

Parameter 
measured 

value 
NeRF 

tested value 

NeRF 
   Root Mean 

Square   
Error 

NeRF 
Mean 

Accuracy 

SFM-MVS 
tested value 

SFM-MVS 
Root Mean 

Square   
Error 

NeRF 
Mean 

Accuracy 

Tree Height 
/m 

2.1850 2.2030 0.0193 99.12% 2.1412 0.0495 97.73%  

Canopy 
Length /m 

2.1760 2.1845 0.0143 99.34% 2.1157 0.0637 97.07% 

Canopy Width 
/m 

1.6420 1.6456 0.0128 99.22% 1.6123 0.0340 97.93% 

Breast 
Diameter /m 

0.0680 0.0643 0.0047 93.09% 0.0645 0.0047 93.09% 

 
CONCLUSIONS 

 This study, focusing on peach trees in the initial fruiting stage, addressed the scientific challenges 

associated with the limitations of stereoscopic vision-based 3D reconstruction techniques in representing 

multiscale complex phenotypic details of fruit trees and the absence of geographic information in generated 
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fruit tree point clouds. By integrating neural radiative fields with georeferencing technology, a digitally 

reconstructed fruit tree was successfully created with high-level geographic positioning accuracy and superior 

leaf canopy phenotypic details, thereby overcoming the technical bottlenecks that have hindered the 

development of the digital fruit tree technology system. 

 Experimental results demonstrated that Neural Radiance Fields (NeRF) could capture the intricate 

topological structure of fruit trees at multiple levels, including tree scale, canopy scale, and organ scale, 

accurately characterizing morphological features of tree branches, fruits, and even leaves. During the NeRF 

scene training process, the LPIPS metric reached a minimum value of 0.2050 and stabilized within the range 

of 0.2 to 0.3, while the SSIM metric achieved a maximum value of 0.7215 and stabilized within the range of 

0.6 to 0.7. The scale consistency accuracy of NeRF fruit tree point clouds in tree height, canopy length, and 

width reached 99.12%, 99.34%, and 99.22%, respectively. Compared to Structure-from-Motion Multi-View 

Stereo (SFM-MVS) fruit tree point clouds, the root mean square errors were reduced by 61.24%, 73.48%, and 

62.32%, respectively. The geographic coordinate registration accuracy of the fruit tree point cloud reached 

millimeter-level, with registration errors generally less than 2 millimeters. 

 The digitally reconstructed fruit tree established in this study possesses accurate geographic information 

and high-resolution phenotypic details at multiple scales. It can provide precise spatial data for unmanned 

agricultural machinery in the WGS-84 geographic coordinate system, endowing it with global perception 

capabilities to guide tasks such as pruning, thinning, and harvesting. Additionally, with its high-quality leaf 

canopy phenotypic details, the digitally reconstructed fruit tree lays a solid technical foundation for research in 

digital phenomics of fruit trees, digital lighting simulation, digital production management, digital yield 

estimation, digital growth monitoring, and digital agricultural technology training, thereby holding significant 

implications for the development of smart orchards. 
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